Aggregate Technician 2024

Part Two

Proficiency Pack

Date: _____

Name: _____

Employer: _____

PART TWO

AASHTO TM71: Deleterious Content of Aggregate **PROFICIENCY CHECKLIST**

Revised on 12/06/2019

Applicant: _____

		Trial #	1	2
	n as received condition (may be	•		
•	0	ggregate using the TM71 table below:		
Note: Surplus this amo				
Maximum Size	Minimum Sample Size of			l
Inches (mm)	+4 material			l
2 (50)	10,000 grams			l
11/2 (37.5)	9,000 grams			
1 (25.0)	5,000 grams			1
3⁄4 (19.0)	3,000 grams			
1⁄2 (12.5)	2,000 grams			
³⁄8 (9.5)	1,000 grams			
Maximum size is	defined as the smallest sieve			
through which 10	0% of the material will pass.			
	sample over a #4 sieve and discar			
<u> </u>		the minimum size needed from the table.		
5. Record the weight	of the plus #4 material as the Orig	ginal Mass		
6. Set-up a workstatio	on with a good light, a pan or spra	y bottle of water and several sorting		
pans				
7. Obtain a handful, b	priefly wet a few particles and visu	ally examine each particle		
	(Do not soak the particle			
8. Examine each piece	e and separate the deleterious par	ticles into specific groups according to		
	<u> 1, Hard Chert, Soft chert, Shale, e</u>			
9. Record the weight	of each group of deleterious found	d in the sample to the nearest whole		
gram				
NOTES:				
•		ary based on product type as well as the		
presence of an				
	rial, keep soft chert separate as it	will be included in both deleterious and		
hard chert				
•	entage of each group identified, r	eport to nearest 0.1% for each category		
$P = \frac{C}{W} x \ 100$				
Where:				
	h deleterious component			
0	iss) of deleterious for each group			
U V	test sample for the portion retain	ed on the #4 sieve		

FAIL FAIL

ASTM D 4791: Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate **PROFICIENCY CHECKLIST**

Revised on 12/06/2019

Applicant: _____

Sampl	e Preparation	Trial #	1	2
1. Sam	ple in accordance with AASHTO R90			
2. Dete	ermine the Nominal Maximum size of the	ne aggregate sample		
	uce the sample using AASHTO R76 to t			
	Nominal Maximum Size	Minimum Mass		
	in. (mm)	lb. (g,)		
	<u>3∕8 (9.5)</u>	2 (1000)		
	1⁄2 (12.5)	4 (2000)		
	3⁄4 (19.0)	11 (5000)		
	1 (25.0)	22 (10,000)		
	1 ½ (37.5)	33 (15,000)		
	2 (50)	44 (20,000)		
	ermine to test either by Count or Mass			
5. For	Mass, sample oven-dried to constant m	nass at 230 ± 9°F (110 ± 5°C)		
For	Count, sample is tested in an as is con	dition		
6. Siev	ve analysis completed according to AAS	HTO T27, record the mass retained of		
each fr	action in column A of the report			
7. Obta	ained the fractions needed to test per (Count or Mass:		
By Par	ticle Count: From the Sieve Analysis	each fraction from the #4 or 3/4" sieve		
and abo	ove as required by specification, with a	minimum of 10% retained will be		
reduced	d to approximately 100 particles			
		4 or 3/4" sieve and above as required by		
	EPG specifications 1002, 1005, etc.			
	dure: Method B - Flat and Elongate			
1. Sort	t each particle in each size fraction into			
	(1) Flat and elongated OR (2)	Not flat and elongated		
2. Prop	portional caliper device positioned at th	e proper ratio 5:1 or 3:1		
3. Test	t each particle in the caliper by setting	the larger opening to the particle		
length				
4. The	n place the particle through the opposi	te side of the caliper for thickness, if it		
slips th	rough the smaller measure, the particle	e is flat and elongated		
	gh the amount of F&E of each fraction			
	r on the report			
nunne				
	ations			
Calcula		culated to nearest 1% for		
Calcula Percen	ations ntage of flat and elongated particles cal h sieve size as required	culated to nearest 1% for		

AASHTO T 85: Specific Gravity and Absorption

Of

Coarse Aggregate

PROFICIENCY CHECKLIST

Revised on: 09/21/2021

Applicant: _____

Procedure Trial	#	1	2
1. Sample obtained by ASHTO R90, and Reduced per AASHTO R76			
2. Screened on No. 4 sieve (4.75mm) or No. 8 (2.36mm) sieve			
3. Sample mass as follows: $\frac{1}{2}$ in. or less – 2 kg; $\frac{3}{4}$ in. – 3 kg; 1 in. – 4 kg;			
1 ½ in. – 5kg			
4. Washed to clean surfaces of particles			
5. Dried to constant mass at 230 \pm 9°F (110 \pm 5°C) and cooled to room			
temperature for 1 to 3 hours (for up to 1 1/2 in. nominal maximum size,			
longer for larger sizes) According to AASHTO T255.			
6. Covered with water for 15 to 19 hours			
7. Prepared bath, overflowed the water for level, and adjusted temperature t	to		
$73.4 \pm 3^{\circ}F (23.0 \pm 1.7^{\circ}C)$			
8. Rolled in cloth to remove visible films of water			
9. Larger particles wiped individually			
10. Evaporation avoided			
11. Weigh the SSD sample and			
Record all masses determined to the nearest 1g or 0.1% of sample mass.			
12. Sample immediately placed in the wire basket			
13. Entrapped air removed before weighing by shaking the wire basket while			
immersed.			
14. Mass determined in water at 73.4 \pm 3°F (23.0 \pm 1.7°C)			
15. Dried to constant mass at 230 \pm 9°F (110 \pm 5°C) and cooled to room			
temperature for 1 to 3 hours [or until aggregate has cooled to comfortabl	е		
handling temperature, approximately 122°F (50°C)			
16. Weigh the dry sample and record the mass			
17. Calculated the Bulk Specific Gravity and Absorption.			
Report:			
Specific Gravity for Asphalt (1002) to the nearest: 0.001			
Concrete (1005) and M80 to the nearest: 0.01			
And Absorption to the nearest: 0.1%			

PASS	PASS
PASS	PAS

FAIL FAIL

Examiner: _____Date: _____

AASHTO T 84: Specific Gravity for Fine Aggregate PROFICIENCY CHECKLIST

(rev 12/16/2019)

Applicant: _____

al #	1	2
		1
tor		
ier.		
:e		
)		
/		
-		
	al # i <	eter.

PASS PASS

FAIL FAIL